
Modeling the Fault Tolerant Capability of a Flight Control System:

An Exercise in SCR Specification*

Chris Alexander

Azimuth Inc.

1000 Technology Drive

Fairmont, WV 26554

chrisa@ azimuthwv.com

Vittorio Cortellessa

Comp. Sc. and Electr. Eng.

West Virginia University

Morgantown, WV 26506-6109

vittorio@ csee.wvu.edu

Ali Mili

Comp. Sc. and Electr. Eng.

West Virginia University

Morgantown, WV 26506-6109

amili@csee.wvu.edu

Diego Del Gobbo

Mech. and Aerosp. Eng.

West Virginia University

Morgantown, WV 26506

delgobbo@cemr.wvu.edu

Marcello Napolitano

Mech. and Aerosp. Eng.

West Virginia University

Morgantown, WV 26506

mnapolit@ cemr.wvu.edu

Abstract

In life-critical and mission-critical applications, it is im-

portant to make provisions for a wide range of contin-
gencies, by providing means for fault tolerance. In this

paper, we discuss the specification of a flight control sys-

tem that is fault tolerant with respect to sensor faults. Re-

dundancy is provided by analytical relations that hold be-

tween sensor readings; depending on the conditions, this

redundancy can be used to detect, identify and accommo-
date sensor faults.

Keywords

Flight Control Systems; Fault Tolerance; Flight Dynam-
ics; Sensor Failure Detection, Identification, and Accom-
modation.

1 Introduction

Providing the fault tolerant capability (FTC) to control

systems is a major issue in domains where system fault oc-

currences may give rise to unrecoverable damages to peo-

ple and/or to very expensive devices (e.g., nuclear plants,

space missions, aircrafts). In this paper we discuss mod-

eling and specifying the fault tolerant capability of a flight

control system (FCS), with respect to sensor faults. Rel-

evant issues include: achieving fault tolerance for FCS's,

defining fault domain (i.e., specifying fault hypotheses),

*This work is supported by a grant fi'oln NASA's DEcdenFlight Re
search Center.

Conespondence author.

adequate modeling, and adequate representation of the
model.

A typical approach to introduce fault tolerance in a con-

trol system is physical redundancy of components. The

detection/identification of a fault is achieved by compar-

ing the behavior of replicated components accomplish-

ing the same task and having the same features. Cost

and complexity considerations led recently an increasing

interest in alternative approaches, mostly based on an-

alytical redundancy. Outputs of components measuring
different but related items are observed in order to de-

tect/identify the faulty component. We go towards the

specification of the fault tolerant capability (based on an-

alytical redundancy) for a FCS, bounded to sensors faults.

We only focus on critical sensors, i.e. sensors measur-

ing modes of the aircraft that change too quickly to be

controlled by the pilot. We neglect multiple, transient and

simultaneous faults. Therefore the goal of this work is

not producing specifications for a complete fault tolerant

capability of a real world FCS, but conceptually address-

ing most of issues that also persist in large scale systems.

The space of sensor readings is partitioned, under fault hy-

potheses, and for each partition analytical relations among

system variables are introduced in order to characterize

the partition and to express constraints that must be sat-

isfied when a fault occurs while system conditions fall in

the partition, in order to guarantee stability and maneuver-

ability of the aircraft.

The formulation of such relations using the Software

Cost Reduction (SCR) notation is based on the tabular

representation of variable behavior in SCR: it is straight-

forward to introduce the expression whose result is the

valuethatavariablemustassume,undergivenconditions.
Functionaldependencyamongtablesisexploitedtocatch
out indirect relations. On the other hand, several repre-

sentation/execution issues are raised here on the usage of

SCR for such a domain (e.g., modeling time).

Section 2 gives an overview of a FCS, in terms of hard-

ware/software components and input/output variables. In

Section 3 analytical relations are introduced that describe

how analytical redundancy provides fault tolerant capa-

bilities to a FCS; domain partition is also provided. In

Section 4 major issues related to the SCR modeling are

dealt, and the specification refinement process, as part of

validation, is also sketched. In Section 5 a wider perspec-

tive of the problem is given, as part of an ongoing project,

where current and future possible directions are outlined.

Conclusions are reported in Section 6.

2 A Fault Tolerant Flight Control

System

2.1 Structure of a Flight Control System

Figure 1 shows the basic architecture of a Fly-By-Wire
Flight Control System (FBW-FCS). In FBW technology

conventional mechanical controls are replaced by elec-

tronic devices coupled to a digital computer. The net re-

sult is a more efficient, easier to maneuver aircraft. Four

subsystems form the core of such FCS's. The Measure-

merit Subsystem (MS) consists of the Sensors and the Con-

ditioning Electronics. It measures quantities that allow

observation of the state of the aircraft. Primary sensors

are those sensors whose correct operation is required to

maintain a safe flight condition. The Actuator Subsystem

(AS) consists of the Control Surfaces, the Power Con-

trol Units (PCU's), and the Engines. It produces aerody-

namic and thrust forces and moments by means of which
the FCS controls the state of the aircraft. The Control

Panel Subsystem contains all control devices and displays

through which the pilot maneuvers the aircraft. The Flight

Control Software subsystem (FCSw) includes all software

components of the FCS. It interfaces to the hardware of

the FCS through A/D and D/A cards (not shown in the fig-

ure). Current measurements, pilot inputs, and commands

to the actuators are processed according to the Flight Con-
trol Law (FCL) to obtain the commands to the actuators

at the next time step. Dash blocks and arrows represent

the system providing Analytical Redundancy based Fault

Tolerant Capability (AR-FTC) to the FCS and will be de-
scribed in the next section.

2.2 Deploying Redundancy for Fault Toler-

ance

Any hardware or software fault within the FCS can com-

promise the safety of the aircraft. For this reason FBW-

FCS's must meet strict Fault Tolerance (FT) requirements.

The standard solution adopted to achieve fault tolerance is

physical redundancy. A typical multichannel architecture

for the FCS consists of three intercommunicating FCS's,

that are equivalent --yet able to work independently. A

voting mechanism checks for consistency and can, under

some conditions, identify faulty components. Brute force

physical redundancy is no panacea, however: product re-

dundancy (duplicating copies of the same product) does

not protect against design faults, and design redundancy

(independent designs) has two major drawbacks, which

are cost and complexity. Complexity, in turn, adversely

affects overall reliability, and defeats the whole purpose

of the fault tolerant scheme. This additional complexity

affects not only the development costs, but also the main-
tenance costs.

These factors have, in recent years, led to an increased

interest in alternative approaches for enhancing FCS's re-

liability. In the past two decades a variety of techniques

based on Analytical Redundancy (AR) have been sug-

gested for fault detection purposes in a number of appli-

cations [12]. The AR approach is based on the idea that

the output of sensors measuring different but function-

ally related variables can be analyzed in order to detect

a fault and identify the faulty component. Furthermore,

preserved observability allows estimating the measure-

ment of an isolated (allegedly faulty) sensor, while pre-

served controllability allows controlling the system with

an isolated (allegedly faulty) actuator. Fault tolerance is

achieved by means of software routines that process sen-

sor outputs and actuator inputs to check for consistency
with respect to the analytical model of the system. If an

inconsistency is detected, the faulty component is isolated

and the flight control law is reconfigured accordingly. By

introducing AR it is possible to take off redundant sensors,

electronics, mechanical linkages, hydraulic lines, PCU's,

etc., thus cutting costs and weight, and reducing overall

complexity of the FCS. Physical redundancy would be re-

quired only where either post-failure system observability

and controllability are not preserved or detection of the

fault by means of AR is not feasible in the first place.

Application of AR in FCS's is not new. The very same

airplane used to conduct research on FBW technology
was also used as testbed for an AR based fault detec-

tion algorithm [14]. The algorithm showed adequate per-

formance during flight tests. However, poor robustness

to modeling errors and the amount of required modeling

hampered further development. Since then, a number of
results have been obtained in the area of robust fault de-

Figure1:FlybyWireFlightControlSystem.

tection[11].Unknown-input observers, robust parity re-

lations, adaptive modeling, and H_ optimization are a

few examples. While recent research has enabled us to

gain new insights into modeling analytical redundancy,

it has fallen short of an integrated design methodology

involving feasibility analysis, requirements specification,

and certification of AR based fault tolerant control sys-

tems. Exploring strengths, weaknesses, related degree of
reduction of physical redundancy, and overall reliability

is a fundamental step in the engineering process of such

systems.

3 Analytical Redundancy for Fault

Tolerance

3.1 The Flight Control System and Its Envi-

ronment

The airplane we adopt in this study is an F16. A detailed

non-linear model of the dynamics of this airplane is pre-

sented in [13]. The analytical redundancy of a fault toler-

ant flight control system depends on an analytical model

of the system and its environment. The dynamics of many

systems can be described in terms of a set of relations
among its inputs, outputs, states, and state derivatives.

These relations represent constrains imposed by laws of

mechanics, electronics, and thermodynamics upon sys-

tem inputs, outputs, and their derivatives. Because of ne-

glected dynamics, disturbances, and measurement errors

the analytical model of a system is not necessarily a truth-

ful representation of the real system. Control system de-

signers are mindful of this discrepancy and adopt design

techniques that are robust with respect to such uncertain-
ties.

In describing how analytical redundancy provides fault

tolerance capabilities to a flight control system, we adopt

the following notation:

1_ (state, state derivative, input, output,

process uncertainty, measurement error) (1)

Rd(current state, new state, input, output,

process uncertainty, measurement error) (2)

Parameters involved in these relations are vectors. The

relations are deterministic with respect to the first four

parameters, and stochastic with respect to the last two.

Whenever a parameter is not involved in a relation, we

write the symbol '-' in its place. Relation (1) is used for

time continuous models, where all parameters are evalu-
ated at the same instant t. Relation (2) is used for time

discrete models, where all parameters are evaluated at the

discrete time tk, except the new state, which is evaluated

at tk+a. The difference (tk+a - tk) is the sampling time

of the discrete system. For the sake simplicity we describe
only the most relevant parameters of the relations that we

introduce in the remainder of the paper. Accordingly, we

will often skip the description of state, state-derivative,

process-uncertainty, and measurement-error parameters

unless they play a prominent role in the analytical redun-

dancyframework.

The following relations represent the analytical models

of the hardware systems in Fig. 1:

P (x(t), _(t), c(t), x(t), _(t), -) (3)

A(xa(t),2a(t),u(t),c(t),_a(t),_la(t)) (4)

(5)
M,, (x,,(t),2,,(t),r(t),y,,(t),_,,(t),_],,(t)) (6)

Relation (3) describes the dynamics of the aircraft, i.e.

the process to be controlled by the FCS. It involves force,

moment, kinematics, and navigation equations. The state

vector includes the flight variables used in the above equa-

tions. A typical state vector is:

x ----[U, V, W, P, Q, R, (b, ®, _, PN, Pz, h]T (7)

where the elements are the three linear velocities, the three

angular velocities, the three attitude angles, and North,

East, and ahimde position of the aircraft. Forces and mo-

ments applied to the airframe by the control surfaces and

the engines are included in the input vector c(t). The out-

put coincides with the aircraft state and represents the ac-

tual value of the flight variables in (7). Since it is a set of

actual values, there is no output uncertainty. The process

error vector (is related to the uncertainty of the relation

with respect to neglected dynamics and unknown inputs.

Relation (4) describes the dynamics of the actuator sub-

system. The input vector u(t) includes command signals

to the actuators, while the output vector includes thrust

and aerodynamic forces and moments. Relation (5) de-

scribes the dynamics between aircraft state x(t) and pro-

cess measurements yp (t). A typical set of sensors pro-
vides the following measurements:

These are static pressure, total pressure, angle of attack,

sideslip angle, body accelerations, and body angular rates

respectively. To differentiate measured from actual body

rates we adopt the 'tilde' notation. Relation (6) describes

the dynamics between the actual position of pilot controls

r(t) and their measurements yr (t). The two measurement

vectors will be referred to in the sequel as:

y(t) = [yp (t), y,, (t)] T (9)

The following relations represent the analytical models of
the software systems in Fig. 1:

I (-, -, y(tk), 9(tk), -, ,lI(tk)) (10)

--,,lL(tk)) (11)

0 (-,-, it(tk), u(tk),-, ,]o(tk)) (12)

The FCSw closes the control loop between sensors and

actuators subsystems. To distinguish software variables

from related electrical signals we adopt the 'hat' nota-

tion. Relation (10) represents the relationship between

measurement samples y(tk) and the corresponding soft-

ware variables 9(tk). Since this is an algebraic relation,

there is no need to introduce state variables, zl(tk) takes
into account quantization error. Relation (11) describes

the dynamics of the the flight control law. Current value

of sensor measurements and actuator commands are pro-

cessed to produce the actuator commands at the next time

step a?(tk+l). Relation (12) describes the relationship be-
tween software commands fi (tk) and electrical commands

In order to complete the set of relationships needed to

illustrate the principles at the basis of AR-FTFCS's we in-

troduce two relationships capturing the FT requirements:

Rh (x(t), _(t), _(t), ÷(t)) (13)

Rl (x(t), 2(t), r(t), ÷(t)) (14)

Relation (13) describes the high priority responsiveness

requirements of the aircraft to pilot commands in terms

of the true state of the airplane, the input commands, and

their derivatives. Relation (14) describes the low priority

requirements. For an airplane to be safe it is mandatory

that the high priority requirements are preserved even in
case of fault.

3.2 The AR-FTFCS

After having introduced the analytical model of the FCS,

its environment, and its fault tolerant requirements it is

possible to illustrate how an AR-FTFCS works.

At the instant tk new measurements are available as

software data 9(tk). The elements of this vector are not

independent; they are correlated by means of relations (3),

(5), (4), (10), and (12). Furthermore, they are correlated to

(tk) by virtue of the same relations. By analyzing sensor

measurement and actuator command histories it is possi-
ble to check whether the above relations are satisfied. If a

fault within the hardware loop produces an inconsistency

with respect to the analytical model the system is said to

hold AR properties allowing detection of the fault. Af-

ter detection of the fault it is necessary to identify which

component has failed. Each component of the FCS plays
a different role within relations (5) and (4). Hence, the

distortion affecting these relations at the occurrence of a
failure depends on the component failed and on the fault

mode. By processing sensor measurement and actuator

command histories it is possible to locate the source of

distortion. If a fault within the hardware loop produces

a distinct signature in terms of commands/measurements

correlationthesystemissaidtoholdARpropertiesallow-
ingidentification of the fault. Once the faulty component

component is identifed, the FCS needs to be accommo-

dated in order to preserve responsiveness requirements.
Accommodation can be carried out at the software level

because the flight control algorithm is not unique. Given

relations (3), (5), (4), (10), and (12) describing the dy-
namics of the aircraft, sensors, actuators, and interfaces

with the FCL, there can be a number of different control

algorithms satisfying responsiveness requirements. Some

of these algorithms do not use all of the sensors and/or ac-

tuators available. Hence, if a hardware component of the

FCS falls, responsiveness requirements can be maintained

by switching to a control algorithm that does not employ

that component. If such an algorithm exists the system is

said to hold AR allowing accommodation of the fault.

Figure 1 shows how a FCS is enhanced to an AR-

FTFCS. The dash blocks and arrows represent the sub-

system providing Fault Tolerant Capability (FTC) to the

FCS. The core of this subsystem is the AR-FTC software
module, while the dash section within the Control Panel

block represents the hardware interface to the pilot. Fol-

lowing the notation adopted in the previous section we

describe the FTC subsystem by means of the following
two relations:

AR_._ (xa,, (_), xa,-(_+a), [y(_), _(_), _(_)],

[Yv (_k), _v(_k+a),/)(_k), _(_k)],-, 7]ar(_k)) (15)

ARH (-,-,
-, z/,,,(tk)) (16)

Relation (15) describes the dynamics of the software mod-

ule. It processes current measurements _(tk) and com-
mands fi (tk) to validate _ (lk) against the analytical model

of the system. If no inconsistencies are detected the

FCL module takes over and produces the new command

fi(tk+a). If an inconsistency is detected the AR-FTC

module further processes incoming data to identify the

faulty component. Then, it either produces a virtual set

of validated measurements _ (tk) for the FCL, or it by-

passes the FCL and produces a new set of validated com-

mands fi_ (tk+a) according to a safe control law that does

not use the faulty component. The two options are typi-

cally adopted for sensor and actuator faults respectively.

If a component of the actuator subsystem falls then it is

often necessary to reconfigure the control law to take into

account the control deficiency. If a sensor falls its out-

put can be estimated and the estimation substituted into

the measurement vector _(tk) to produce _ (tk). How-
ever, the solution can be adopted where the FCL is by-

passed and an alternative control law is used in its place.

The _ (tk) signal is used to synchronize execution of the

FCL and the AR-FTC modules, rh(tk) and _3(tk) are the
operational mode selected by the pilot and the diagnos-

Fault mode Yi (Volts) _)i (deg/sec)

Loss of signal [2.0, 2.5] [-22, 0]

Loss of power 0 - 90

Loss of ground 12 90

Table 1: Fault modes

tic information respectively. Relation (16) represents the

relationship between pilot's controls m(t k) and displays

v (tk) and related software variables rh (tk) and _3(tk).

3.3 Fault Hypotheses

In the previous section we have shown how a system fea-

turing AR properties can be made fault tolerant with re-

spect to sensor faults at the software level. However, soft-

ware along with its supporting hardware (computers, data

buses, etc.) and hardware systems other than sensors and

actuators can fail as well. AR cannot be adopted to pro-

vide fault tolerance with respect to failure of such com-

ponents; a different approach must be adopted for these

types of faults.

In this phase of the study we focus our attention on sen-

sor faults only. More specifically, we require fault toler-

ance with respect to failure of the roll, pitch, and yaw rate

gyros. The sensors used are a solid state rate gyro where

a vibrating element is used to measure rotational veloc-

ity by employing the Coriolis principle. The output range

of the sensor is -4-90deg/sec and its bandwidth is 18Hz.

The output of the sensor has been recorded while simu-

lating the failures. Three different fault modes have been

considered: loss of signal, loss of power, loss of ground

reference. The fault modes along with outputs of the sen-

sor and the values of the correspondent software variable
are listed in Table 1.

3.4 Fault Modeling

We have to point out that even though analytical redun-

dancy does enable us to achieve some level of fault toler-

ance, it does not guarantee arbitrary levels of precision in

detecting, identifying, and accommodating sensor faults.

An exhaustive feasibility analysis covering components

subject to failure, fault modes, and possible state evolu-

tion for actuator, aircraft, and sensor systems is required.

To explain how detectability and identifiability problems

arise we will refer once again to relations (3), (5), (4),
(10), and (12). These relations can be assembled to form

one single relation that captures the system AR at soft-
ware level in terms of sensor measurement and actuator

command histories:

(17)

Here u represents a global uncertainty term collecting all

process uncertainty and measurement error terms in rela-
tions (3), (5), (4), (10), and (12). Variables n, m, and p

represent the depths of the input, output, and uncertainty

sequences respectively. If we consider the space whose

points have coordinates given by the elements involved

in relation (17), we can distinguish those regions of the

space where relation (17) is satisfied, from those where

it is not. Furthermore, we can characterize those regions

related to distortions of relation (17) caused by the given
fault modes.

Following Mili et al. [1, 7], we model a fault toler-

ant scheme by means of a partition of the relevant state

space into a hierarchy of classes that represent degrees of

correctness, degrees ofmaskability, and degrees of recov-

erability. For a program, the relevant state space is the set

defined in terms of all the values taken by all the state vari-

ables of the program; for a set of sensors, the relevant state

space is the set defined in terms of all the values taken by

all the sensor readings. The partitionthat we derive for our

purposes is given in figure 2. Process uncertainties (distur-

bances, simplifying hypotheses, modeling shortcuts, etc)

make the actual partition more complex than the original

model [1, 7]. In its current form, this partition is incom-

plete, and is being refined.
The inner ellipsis of figure 2 represents states for

which the deterministic relationship within relation (17)

holds. The outer ellipsis contains the points for which

the stochastic relation (17) holds. Points outside this re-

gion imply an inconsistency with the analytical model of

the system. The three triangles marked F1, F2, and F3

contain points related to three different fault modes. The

intersection between the region 'F1 U F2 U FY and the

outer ellipsis contains those points that are related to a

fault mode, but that preserve relation (17). Hence, this

region represents those states where a fault mode is not

detectable by means of AR. This region is marked Detec-

tion non Feasible in the figure. The region marked Identi-

fication non Feasible contains those points for which the
identification of a fault cannot be achieved either because

that fault mode has not been considered within the speci-
fications, or because failure effects do not allow us to dis-

tinguish between the fault modes.

To describe accommodation feasibility in analogous

terms we need to consider the space whose points repre-

sent the aircraft states. If after the failure of a component
the FCL can be reconfigured to satisfy the safety require-
ments then accommodation is feasible within the whole

space. If instead there are states that cannot be reached

without violating the safety requirements the space will

be partitioned in regions where accommodation is feasi-

ble and regions where it is not. As a limit case, accommo-

dation is not feasible in the whole space if there is no FCL

that would satisfy the safety requirements.

4 SCR Modeling

The derivation of this specification is part of a larger

project whose purpose is to validate and certify an adap-

tive fault tolerant capability (AR-FTC in figure 1) for a

flight control system, which is concurrently being imple-

mented using a radial base fimction neural network [8].
Our intent is that the specification will be used as an or-

acle in the testing task which aims to validate/certify the

fault tolerant capability. Consequently, it is rather imper-

ative that the specification be written in a language that

is supported by automated tools; so that in the validation/

certification phase, the neural net and the executable spec-

ification can be executed independently to provide a basis

for checking the former against the latter. We have chosen

to use SCR as the specification vehicle, because it lends

itself to this type of application: tabular representations,
which form the semantic foundations of SCR, were used

in [3] to specify the requirements of the Navy's A7-E air-

craft and in [10] to specify nuclear power plants; SCR

was used to specify an autopilot [2], to specify a variety

of high assurance applications [5, 6], and to specify some

functions of the space shuttle software [15].

4.1 Scope of the Specification

Figure 1 shows the structure of the overall aircraft sys-

tem, including the data flow between the aircraft, the flight

control system, the cockpit controls, and the environment.
The first issue we must address is to delimit the bound-

aries of our specification. We have pondered two possi-

ble options, which we denote by option 1 and option 2:

whereas option 1 focuses on the inputs and outputs of the

fault tolerant capability component (re: AR-FTC, in figure

1), option 2 (the aggregate of the flight control system,

with the aircraft) considers the impact of the outputs of

the AR-FTC on the aircraft state. The choice of an option

is driven by the following considerations.

Generality/Abstraction. For a given situation, de-

fined by a set of sensor readings, there are many se-

quences of actions that a flight control system can

follow to achieve/maintain the maneuverability/sta-

bility of the aircraft. At any instant, these actions
may be different, but their combined effect over time

is identical. Hence by virtue of abstraction (we do
not wish to deal with the detailed mechanics of how

the AR-FTC operates) and generality (writing speci-

fications that apply across a wide range of possible

Figure2:PartitionoftheSpaceofSensorReadings

implementations),thesecondoptionis betterthan
thefirst.

Observability/Controllability. If we choose option

2, then we cannot judge the outputs of the AR-FTC

directly, but we have to observe their effect on the air-

craft. This gives us much lower observability of the

AR-FTC than option 1. Controllability is the same

for both options.

Ultimately, this decision amounts to choosing between
observability (option 1), i.e. the ability to observe and

monitor the exact values that are produced by the FTFCS

implementation, and abstraction (option 2), i.e. the ability

to give the implementer some latitude in how to maintain

maneuverability. We have ruled in favor of abstraction.

4.2 Representation Issues

By virtue of the choice discussed above, the input vari-

ables of the specification are the sensor readings of rel-
evant flight parameters (altitude, speed, acceleration, an-

gle of attack, rate gyros, aileron deflections, elevator de-

flections, rudder deflection) and the actuator input values;

the output variables are the actual values (i.e., the vali-

dated vectors) of the same parameters and a fault report.

Hence, for parameter Y, for example, we define variable

mY (named after SCR parlance: monitored Y) which rep-

resents the sensor reading for Y, and variable cY (con-

trolled Y) which represents the actual value of parameter

Y. Because of sensor failures, cY may differ from _zY.

In addition, because of the latency of the FCS and (espe-
cially) of the aircraft (in reacting to adjusted actuator val-

ues), the value of cY at time _ (cY(_)) is not functionally

related to the value of _zY at the same time _ (_zY(_)),
but rather to previous values of _zY. In addition to the

sensor readings of the flight parameters, the set of input

variables also includes the values of the cockpit controls.

The second and fourth columns of table given in figure 3

show the structure of the input and output spaces. We now

give a mapping of those spaces into the partition of sensor

readings in figure 2.

The innermost ellipsis of figure 2 represents the fault-

free case, whose relation takes the form

where predicate p characterizes the condition of determin-

istic fault freedom. The outermost ellipsis of figure 2 rep-
resents the case in which a measurement error in sensor

readings leads to uncertainty in the fault process; the rela-

Family Input State Output

of (monitored) (Tern1) (controlled)
Variables Variable Variable Variable

Flight

Parametel, Y mY tY cY

Actuator

Inputs, U mU tU cU

Pilot

Command, MR m M t_

Fault

Report, V cV

Figure 3: Space Structure

tion for this ellipsis takes the form

n' = {((.,v, .,u), (cV,cU))]q(.,v, .,u, cV,cU,,j,¢)},

where rl represents the measurement error and _ the pro-

cess uncertainty; predicate q characterizes the condition

of fault status in the stochastic dynamics.

Each triangle Fi of figure 2 represents a different fault

mode, whose relation take the form

= {

where predicate fi characterize the condition of fault

mode i. Different shades and bold lines in figure 2 sep-

arate areas with different fault capabilities. In order for a

fault i to be detected, it must satisfy

RF, _ R = O;

also, to be identified, it must satisfy

RE, N RFj =_ (Vj¢i).

With regard to accomodability, the specification must

reflect the property that the aircraft remains maneuver-

able despite the presence of sensor faults. In particular,

in every triangle Ei maneuverability is a binary function

in variables rnMR(t) and cY (t) (linking pilot commands

to actual flight parameters). Because rnMR(t) and cY(t)

are not instant variables but rather functions of time, it is

conceivable that the value of cY at some time t be a func-

tion of the value of rnMR at a previous time t' < t.

4.3 Modeling Issues

Time is inherent in the specification of the FTFCS. Execu-

tion of the FTFCS takes place in the context of a sequence

of sensor inputs which, except for faults, represents a

physically feasible flight path. The FTFCS is aware of

the passage of time through the advent of clock pulses;

at each clock pulse, the FTFCS takes a snapshot of the

sensor readings, processes them, computes actuator val-

ues, then awaits the next clock pulse. Note that the sensor

readings may well remain constant across two or more

clock pulses; the FTFCS processes them at each clock

pulse all the same. On the other hand, sensor readings

may take several distinct values between two successive

clock pulses; the FTFCS is only aware of their two values

at the successive clock pulses.

Whereas the real-time operation of the FTFCS is driven

by the clock pulses, the execution of the SCR specification

(for the purposes of validating the specification or verify-

ing implementations against it) is driven by the succes-

sive application of the functions defined by SCR's tabular

expressions on the input variables and the state variables.

SCR specifications are executed in a kind of a batch mode,

where the real time between two successive function ap-

plications need not bear any relation to the actual time

between two successive clock pulses.

The concept of time arises naturally in flight dynamics

equations, which are differential equations of flight pa-

rameters and pilot commands. Let us consider some con-

trolled variable cX, and let us assume that this variable

satisfies the following differential equation:

d(cX) _
dt

where t is the time variable, F is a function of t that po-

tentially involves monitored and controlled variables (in-

cluding cX), and dX77- is the derivative of X with respect to

time. If we approximate the derivative by means of finite

differences, we find (cx(t)-cx(t-st)) _ F(t). If we let at

be the interval between two successive clock pulses, and

let this be the unit of time (i.e., at = 1), then cX(t) and

cX(t - at) measure the current value and the past value of

parameter cX. Solving this equation for cX(t), we find

cX(t) = cX(t - at) + f(t). (18)

Each application of this transformation (from cX (t - at)

to cX(t)) represents the effect of the advent of one clock

pulse. In order to distinguish between the current and past

values of variable cX, we use SCR's concept of term vari-

able. To each flight parameter (X) we associate a term

variable, which we denote by prefixing the variable name

with t; the term variable is used to represent the value of

the variable at the preceding clock pulse. In order to rep-

resent the transformation described in equation (18), we

write S CR tables to perform the following transformations

in sequence.

tX := cX;

cX := tX + F;

We cannot merely define two tabular expressions that

compute variables cX and tX according to these formu-

las, for they produce a circular reference (and SCR does

not recognize the sequence command --the order of ex-

ecution in SCR is driven merely by functional dependen-
cies).

A tantalizing alternative is, of course, to use SCR's

primed variable convention, whereby the primed version

of any given (non-primed) variable is the previous value of

that variable. This option does not work for our purposes,

because of the specific interpretation of previous value in
SCR. SCR is event-driven, where each change of value

of any variable is understood to be an event; by contrast,

our model is time-driven, where an event is the advent of

a clock pulse. If, between two successive clock pulses,

three monitored variables change values, SCR considers

that it has witnessed three events, and previous refers to

the most recent one; by contrast, our model considers that

only one event has occurred, and previous refers to the

state of the system at the previous clock pulse.

5 Assessment

In this section, we review our specification project (al-

though it is still in progress) and assess some of our deci-

sions, with partial hindsight.

5.1 SCR Adequacy

We briefly report on our experience with using SCR for

the purposes of our specific situation. We acknowledge

that we have very little prior experience with SCR, and

our comments must be qualified accordingly.

The general pattern of a table in SCR is to compute
a controlled variable in terms of monitored variables and

possibly term variables. Many requirements that we en-
counter are instead best formulated as a relation between

monitored variables (to limit the domain of a relation), or

a relation between controlled variables (to limit the range
of a relation). Also, even if the controlled variable is a de-

terministic function of the monitored variables, it may be

more natural to represent this function by a conjunction of
non-oriented, non-deterministic, relations.

We find it unsettling that in a specification that has a

large number of tables, the only composition operator be-

tween these tables is functional dependency, which is not

even explicit. We would find it more powerful to have a

wide vocabulary of composition operators which we can
use to compose tables together. There is undoubtedly a

sound basis for letting functional dependency be the sole
criterion that determines the order of evaluation of tabu-

lar expressions. But our experience with modeling time

would have been more successful if we had the ability to

impose an arbitrary sequencing between tables, to break

the cycle of circular dependencies. (Note: It is possible to

define a refinement-monotonic sequence like operator, us-

ing demonic semantics). Furthermore, because tables are

combined only with functional dependencies (rather with

refinement-monotonic composition operators) we find no

natural discipline for stepwise specification generation.
Such a discipline would enable us to compose a specifica-

tion in a stepwise manner, and to know that as we produce

more and more tables, the overall specification grows in-

creasingly more refined (until completeness). The struc-

ture afforded by such explicit composition operators can

be used to control the complexity of subsequent validation
and verification tasks.

Because SCR, and the tabular expressions on which it is

based [9, 4], support model-based specifications, it elicits

more detail from the specifier than a behavioral specifi-

cation. This excess detail makes the specification more

complex, and may lead to inconsistencies.

We find that the data type offerings of SCR are more

akin to those of a programming language than to those of

a specification language. In an application such as ours,

we needed a variety of data types, ranging from angles

(degrees) to durations (seconds) to engine speeds (rota-

tions per minute) to positions (meters) to speeds (meters/

second) to accelerations (meters/second/second) to an-

gular velocity (degree/second), etc. We found ourselves

mapping all of them into reals, when a language supported

typing system that provided a wide range of data types and

a corresponding type checking function would have en-

hanced the readability and reliability of our specification.

We also found that it would have been helpful if SCR pro-

vided dimension-checking functions, whereby whenever

we write an equation, it checks the dimensions of both

sides to ensure that they are consistent. Whether this is an

extension of the type checking function, a separate func-

tion, or actually the same (only more elaborate) function,
we do not know.

Many of the issues that we raised here are interrelated

(e.g. a single design decision dictates a host of interrelated

issues), and many stem from legitimate design tradeoffs

(e.g. favoring efficient executability vs expressive power).

We assume that as we become more acquainted with the

spirit of S CR's specification model, some of these issues

will may grow increasingly insignificant.

5.2 Non-determinacy

We faced a dilemma while trying to derive a specification

for the fault tolerant capability flight control system, deal-

ing with the determinacy of the specification. We had two

options:

Make the specification deterministic. This is more

natural, from the standpoint of SCR (which revolves

around the pattern of formulating controlled vari-
ables as a function of monitored variables), and

yields generally simpler specifications. The main
drawback of this solution, of course, is that it forces

us to second guess the designer of the neural net, be-
cause we have to derive a specification for the exact

function that the neural net is implementing. This,

in turn, has two drawbacks: first, it imposes much

coordination between the implementer team and the

specifier team, and is counterproductive from a V&V

viewpoint (V&V relies primarily on redundancy);

second, it imposes early constraints on the designer,

prohibiting him from altering design decisions that

affect the specifier team.

Make the specification non deterministic. The posi-

tion here is to let the specification focus on express-

ing the desired functional properties, without going

as far as to uniquely specify which output will satisfy

these desired properties. This solution is consistent

with traditional guidelines for good specification, but

causes some difficulty in SCR, because SCR does not

handle non-determinacy naturally. This is the most

striking limitation we have encountered using SCR.

In our example (and certainly in many other applica-

tions as well), we often encounter requirements that

are not deterministic; also, many complex require-

ments are best formulated as the aggregate of a set of

simpler, non-deterministic requirements.

We felt very justified in choosing the second option, but

have found that it raises an issue which may, with hind-

sight, cause us to reassess our choice: Under the first op-

tion (deterministic specification), the specification of the

system does not have to capture the criteria under which

differences of output between the specification and the

implementation can be considered tolerable; this decision

can be made during the verification and validation step,

by the V&V team, to take into consideration any special

circumstances that may arise at run-time. By contrast, un-

der the second option, the tolerance margins have to be

hardcoded into the specification, and cannot be adjusted

subsequently by the V&V team to account for special test-
ing/operational conditions. Hence both options force us

to make early decisions: The first option imposes on us to

agree with the implementer on specific design decisions;

the second option imposes on us to agree with the V&V

team on specific tolerance margins.

6 Prospects

6.1 A Testing Plan

Our plan calls for using the target specification as an or-

acle in the test plan of the neural network. Specifically,

the neural net feeds its inputs into a certified flight sim-

ulator, which plays the role of the aircraft components in

the graph of figure 1. This aggregate is placed side by

side with the SCR specification, whereby the SCR is used

as an oracle to test the neural net. Input data is submit-

ted to the system under test and the SCR oracle, to check

for correctness. This input data is the aggregate of sensor

readings and pilot controls, which are collected from pre-

viously collected flight simulation data. The purpose of

the testing plan is to make a ruling on the certifiability of

the neural net as an implementation of the fault tolerant

capability of the flight control system. The system struc-

ture that we have derived for this purpose is presented in

figure 4. The fault reports of the neural net and the SCR
specification are compared for logical equality, producing

the result shown in the lower right comer of the figure. On

the other hand, the actual state of the aircraft, produced by

the flight simulator, is matched against the pilot controls

(by virtue of a law that captures aircraft maneuverabil-

ity), to return a boolean indicator of whether the aircraft

maintains adequate maneuverability (despite the possible

presence of faults).

6.2 Interpreting Flight Dynamics Equa-
tions

In the process of deriving the SCR specification of the

FTFCS system, we are really conducting two activities,

namely modeling and representation:

Modeling. This task deals with such matters as de-

ciding which parameters are of interest, how do we

represent the fault tolerant capability, how do we rep-

resent time, how do we approximate derivatives, how

do we enforce sequencing of tabular evaluations/ex-

ecutions, how do we reflect the dynamic nature of

the system, how do we detect, identify and accom-

modate faults, etc.

Representation. Generally speaking, this matter

deals with how do we map our model into SCR
terms, and how do we formulate our model in such

a way as to take the best advantage of built-in SCR
features.

Ideally, we would like to think of these two activities are

being strictly sequential; i.e. modeling must be completed

before representation can proceed. As attractive as it may

Accomodation

Requilement

U

Y

MR

actuators I

sellsOrSpilot

colrnnalld_

SCR specifications

of

Fault TolermK

Capability

i[Neural

Network

fault report

y,

validated sellsors

X

ak'craft

state

Flight [

Simulator

validated actuators

validated sellsors

fault report

/
V

^

m, U

^

Y

Figure 4: A Testing Plan for the Neural Net

be, this discipline has proven to be a challenge in prac-
tice, due to time pressures and to the impact of represen-

tation constraints on modeling decisions. This has led us

to consider the possibility of producing a syntax directed

translation of flight dynamics equations into SCR source

code. The main advantage of this solution is that we get to

encode all our modeling decisions in the syntax-directed

rules; this allows us to keep our modeling options open

until very late in the specification lifecycle; most impor-

tant of all, this solution ensures that our modeling deci-

sions are applied uniformly across all the equations of the

specification.

6.3 Analytical Reasoning on Neural Nets

Traditional certification algorithms observe the behavior

of a software product under test, and make probabilistic/

statistical inferences on the operational attributes of the

product (reliability, availability, etc). The crucial hypoth-

esis on which these probabilistic/statistical arguments are

based is that the software product will reproduce under

field usage the behavior that it has exhibited under test.

This hypothesis does not hold for adaptive neural nets,

because they evolve their behavior (learn) as they prac-
tice their function. Of course, one may argue that they

evolve their behavior for the better; but better in the sense

of a neural net (convergence) is not necessarily better in

the sense of correctness verification (monotonicity with

respect to the refinement ordering). Concretely, a neu-

ral net may very well satisfy the SCR specification in the
testing phase, and fail to satisfy it in the field usage phase,

even though it converges. See figure 5.

In light of these observations, we envisage to comple-

ment the certification testing activity with an analytical

method. Such a method would rely on some semantic

analysis of the neural net, as well as some hypothesis re-

garding the data that it receives in the future.

7 Summary

In this paper we have discussed the formal specification,

in SCR, of an adaptive fault tolerant flight control sys-

tem. The specification is due to be used as an oracle in
the certification of a radial basis function neural net that

implements the adaptive scheme. The fault tolerant prop-

erties of the system, the adaptive nature of its implemen-

tation, and the specific application for which the specifi-
cation is intended (certification), contribute to make this

a unique experiment in system modeling and representa-

tion. In particular, the fact that the system implementa-

tion is adaptive (hence does not duplicate its behavior as

it evolves) rules out traditional testing techniques. Also,
the fact that the system's behavior is dependent on input

history precludes the traditional static analysis techniques.

The specification generation is under way, and we expect

many of the modeling and representation decisions that

we have discuss in this paper to remain influx.

SCR Range Symposium on High Assurance Systems Engineer-

ing, pages 81-88. IEEE Computer Society Press,
November 1999.

NN Range, under test

Behaviour
• under test

NN Range, in field

Behaviour
__in field

Figure 5: Convergence does Not Ensure Consistency

Acknowledgments

The authors acknowledge the assistance of Dr Constance HeiUneyer and

Dr Ralph Jeffords, froln the Naval Research Laboratol_, with the use of

SCR. Also, we thank Prof. Steve Easterbrook, University of Toronto,

who contlibuted his knowledge and experience with S CR.

References

[1] H. Ammar, B. Cukic, C. Fuhrman, and Mili. A com-

parative analysis of hardware and software fault tol-

erance: Impact on software reliability engineering.
Annals of Software Engineering, 10, 2000.

[2] R. Bharadwaj and C. Heitmeyer. Applying the SCR

requirements method to a simple autopilot. In Pro-

ceedings, Fourth Langley Formal Methods Work-

shop, Hampton, VA, September 1997.

[3] K. L. Heninger, J. Kallander, D. L. Parnas, and J. E.

Shore. Software requirements for the A-7E air-

craft. Technical Report 3876, United States Naval

Research Laboratory, Washington D. C., 1978.

[4] R. Janicki, D. L. Parnas, and J. Zucker. Tabular rep-
resentations in relational documents. In Ch. Brink,

W. Kahl, and G. Schmidt, editors, Relational Meth-

ods in Computer Science, chapter 12, pages 184-
196. Springer Verlag, January 1997.

[5] J. Kirby Jr, M. Archer, and C. Heitmeyer. Applying

formal methods to a high security device: An expe-

rience report. In Proceedings, IEEE International

[6] J. Kirby Jr, M. Archer, and C. Heitmeyer. SCR: A

practical approach to building high assurance: Com-

sec system. In Proceedings, Annual Computer Secu-

rity Applications Conference. IEEE Computer Soci-

ety Press, December 1999.

[7] A. Mili. An Introduction to Program Fault Tol-

erance: A Structured Programming Approach.

Prentice-Hall, Englewood Cliffs, NJ, 1990.

[8] EE. Nasuti and M. Napolitano. Sensor failure de-

tection, identification and accomodation using radial

basis function networks. Technical report, West Vir-

ginia University, Mechanical and Aerospace Engi-

neering, Morgantown, WV, November 1999.

[9] D. L. Parnas. Tabular representation of relations.

Technical Report 260, Communications Research

Laboratory, Faculty of Engineering, McMaster Uni-
versity, Hamilton, Ontario, Canada, October 1992.

[10] D. L. Parnas, G. J. K. Asmis, and J. Madey. As-

sessment of safety-critical software in nuclear power

plants. Nuclear Safety, 32(2): 189-198, April-June
1991.

[11] Ron J. Patton. Robust model-based fault diagno-

sis: The state of the art. In T. Ruokonen, editor,

IFAC Symposium on Fault Detection, Supervision

andSafetyfor Technical Processes: SAFEPROCESS

'94, volume 1, pages 1-24, Helsinki Univ. Technol,

Espoo, Finland, June 1994. IFAC, Springer Verlag.

[12] Ron J. Patton, Paul Frank, and Robert Clark. Fault

Diagnosis in Dynamic Systems: Theory and Appli-
cations. Prentice Hall, 1989.

[13] Brian L. Stevens and Frank L. Lewis. Aircraft Con-

trol and Simulation. John Wiley and Sons, New

York, N.Y., 1992.

[14] K.J. Szalai, R.R. Larson, and R.D. Glover. Flight

experience with flight control redundancy manage-
ment. In AGARD Lecture Series No.109. Fault

Tolerance Design and Redundancy Management

Techniques, AGARD Lecture Series, pages 8/1-27.
AGARD, Neuilly-sur-Seine, France, October 1980.

[15] V. Wiels and S. Easterbrook. Formal modeling of

space shuttle change request using SCR. Techni-

cal Report NASA-IVV-98-004, NASA IV& V Facil-

ity, Fairmont, WV 26554, http://www.ivv.nasa.gov/,
1998.

